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1. INTRODUCTION
BitTorrent (BT) [1] is a P2P protocol designed for fast and effi-

cient distribution of large files. Many factors contribute to the BT
system dynamics, such as the arrival and departure of peers,and
the terminations of connections when peers find better neighbors.
Qiu and Srikant [6] consider the arrival and departure process as
the main source of dynamics. Liaoet al. [3] study the connec-
tion dynamics, in particular, they consider the effect of optimistic
unchoking and tit-for-tat, and estimate the average download rates
for heterogeneous peers. However, as far as we know, no work has
considered these two types of dynamics together.

This paper takes into account these dynamics, and presents a
stochastic model to study the fractions of peers with different con-
nection numbers, from which we can compute the average num-
ber of connections per peer. In practice, to limit P2P applications,
some ISPs charge users by the numbers of TCP connections, so
it is important to estimate the average number of connections per
peer. Using this model, BT users can estimate the average number
of connections per peer, and then choose the numbers of TCP con-
nections to minimize their costs. Since we assume homogeneous
peers, the average download rate is equal to the upload rate,so it
is trivial to estimate the average download rate or the average file
download time in this model.

1.1 Peers
We assume homogeneous peers here, and each peer has an up-

load capacity ofC. Then the average download rate is alsoC. The
maximum number of uploads (or connections) isN ≥1. Peers are
classified into different types according to the numbers of active
uploads connections, i.e., a peer maintainingi uploads is of type
i. Note that there are no peers of type 0, since each peer always
maintains an upload via optimistic unchoking. For peers of type
i, the bandwidth per upload isci = C/i. We denote the fraction
of peers of typei in the system asqi, with

P

1≤i≤N
qi = 1. We

assume the download capacity is not the system bottleneck, and the
limit to the system throughput is the peer upload capacity, which is
a well-known assumption suggested in [5, 2, 4].

1.2 Optimistic Unchoking and Tit-for-tat
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Optimistic unchoking and tit-for-tat are considered here.The
download rate of a peer is influenced by these two mechanisms,
and we denote the download rate caused by optimistic unchok-
ing (tit-for-tat) asd̄OU (d̄TF T ). Then the average download rate
is d̄ = d̄OU + d̄TF T . Since the receiver of optimistic unchok-
ing is randomly selected, a peer has equal probability to receive
an optimistic unchoking upload from all other peers, sod̄OU =
PN

i=1
ciqi, where we knowd̄OU is the same for all peers.

When an optimistic unchoking occurs, the receiver should decide
whether to upload to the sender subjected to the tit-for-tatmecha-
nism. To study this influence, we model the optimistic unchoking
and tit-for-tat as the following processes: (1)Random upload: It
is used to characterize optimistic unchoking. Every peer maintains
a random upload, whose receiver is randomly selected. The dura-
tion is the same as optimistic unchoking, andd̄OU is the average
rate of the random upload. (2)Random request: It is used to char-
acterize the tit-for-tat process. When a random request arrives, a
peer selects another peer randomly, and sends the later a request.
If both peers find it beneficial to exchange service, a bidirectional
connection is established.

In a realistic BT system, at the end of each random upload, there
should be a random request. To simplify the analysis, we assume
these two processes are independent. Then peers are memoryless
and all connections except optimistic unchoking are bidirectional.
In the rest of this paper, unless we state otherwise, we will use
“connection” instead of “bidirectional connection” for simplicity.

1.3 System Dynamics
In a realistic BT system, connections may be terminated due to

the following reasons: 1) peers finish the file download and leave
the system, and 2) for a peer, if the number of connections reaches
the maximum and it finds a non-neighboring peer with a higher
bandwidth per upload, it terminates the connection with themin-
imum bandwidth download so as to establish a new one with the
non-neighboring peer.

Assume the peer arrival process is a Poisson process with rate
λ, and peers will leave the system immediately after they finish the
file download. If the file size isF and the average download rate of
type i peers isd̄i, then the departure rate for a single typei peer is
µi = d̄i/F . Since the average download time of all peers isF/C,
using the Little’s Theorem, the number of peers in the systemat
steady state isM = λ · F/C.

If there is a connection between a typei peer and a typej peer,
we denote this connection asi↔ j, andρ(i, j) is the rate that the
typej peer terminates this connection. We have

ρ(i, j) ≥ µj . (1)

Assume the arrival of random requests is a Poisson process, and
the duration of an optimistic unchoking is1/ω in a BT system.



Note that for each optimistic unchoking, there should be a random
request. So the rate of a peer sending random requests isω, which
is also the rate of a peer receiving random requests.

2. A STOCHASTIC MODEL
In this section, we define peer state, and characterize the system

state by the numbers of peers in different peer states. Then we ex-
press the transition rates between different system states, and solve
a system of differential equations to get the fractions of peers in
different peer states at steady state. We first give some definitions
and notations:

(1) Peer state: We say a peer is in peer states=(n1, n2, · · · , nN ),
whereni is the number of its typei neighbors. We introduce the
definition of peer state, because peers of the same type may behave
differently since they may have different types of neighbors, so one
cannot simply use peer type to describe the system accurately.

(2) Feasible peer state: We denoteS as the feasible peer state set.
In this model, we fix the number of optimistic unchoking connec-
tions to 1, and consider the dynamics of tit-for-tat connections only.
Then the maximum number of connections a peer can maintain is
N−1. DenoteIk as the vector whose firstk coordinates equal 1 and
other coordinates equal zero. For eachs ∈ S , IN · sT ≤ N − 1,
n1 = 0 andni ≥ 0. Let Si be the set of peer statess ∈ S where
INsT = i − 1. Then all peers in peer states ∈ Si are of typei.

(3) Exogenous peer arrival rate and exogenous peer departure
rate: Letλ(s) be the exogenous peer arrival rate of peer states.
Note thatλ(s) is zero except for the peer state(0, 0, · · · , 0). De-
noteEi as the vector whoseith coordinate equals 1 and all other
equal zero. For peers in peer states, the average download rate is
d̄(s) = d̄OU +

P

1≤i≤N
ci · Eis

T , and the exogenous peer depar-
ture rate isµ(s) = d̄(s)/F .

(4) System state: LetX(s, t) (p(s, t)) be the number (fraction)
of peers in peer states at timet, and{X(s, t)|s ∈ S} be the system
state at timet. If the total number of peers isM , thenX(s, t) =
M · p(s, t) and

P

s∈S p(s, t) = 1. We specifyp(s, t) = 0 for all
s 6∈ S . In the rest of this paper, we omit the termt for simplicity.

Peers can transitions from one peer state to another. For a peer
in peer states, it may go tos + Ej , s + Ej − Ek (j < k) when
a random request arrives, or go tos − Ej when a disconnection
occurs, or go tos−Ej +Ej+1 or s+Ej −Ej+1 when the type of
a neighbor is changed. Note that when a transition occurs, two or
more peers will change their peer states. To simplify the analysis,
we assume the peer states of different peers are independent, so
we can consider the transition of a single peer at a time. We now
express the transition rates between different system states.
(1) X(s) → X(s) + 1: It means that an exogenous peer of states
enters the system, so the transition rate isλ(s).
(2) X(s) → X(s) − 1: It means that a peer of states leaves the
system, so the transition rate isMp(s)µ(s).
(3) X(s), X(s+Ej) → X(s)−1, X(s+Ej)+1: It means that a
random request arrives and a peer of states (say peera) connects to
a peer of typej (say peerb). Suppose peera is of typei, and peer
b is in peer statesb. We know thatINsT <N − 1, and before this
random request, 1) ifj < N , peerb must be of typej − 1, and the
transition rate is2Mω · p(s)Prob{sb ∈ Sj−1}, where Prob{sb ∈
Sj−1} =

P

sb∈Sj−1
p(sb), and 2) if j = N , peerb must be of

typeN−1 or N , and the transition rate is2Mω · p(s)Prob{sb ∈
SN−1 ∪ SN , Ii+1s

T
b < N − 1}.

(4) X(s), X(s − Ej) → X(s) − 1, X(s − Ej) + 1: It means
that a disconnection occurs and a neighbor of typej terminates the
connection with a peer in peer states. Let s ∈ Si, and then the
transition rate isMp(s) · Ejs

T ρ(i, j). Please refer to Appendix A

for the derivation ofρ(i, j).
(5) X(s), X(s + Ej − Ek) → X(s) − 1, X(s + Ej − Ek) + 1:
It means that a random request arrives at a peer of states ∈ SN

(say peera). Suppose the minimum bandwidth download which
peera receives is from a peer of typek (saya′), soEksT > 0 and
IksT = N − 1. Then peera terminates the connection with peer
a′, and connects to a peer of typej (say peerb), wherej < k. So
whenEksT > 0, IksT = N − 1 andj < k hold, the transition
rate is2Mω · p(s)Prob{sb ∈ Sj−1, INsT

b < N − 1}.
(6) X(s), X(s−Ej +Ej+1) → X(s)−1, X(s−Ej +Ej+1)+1:
It means that for a peer of states, one of the neighbors of typej
connects to a new peer, and then becomes a neighbor of typej +1,
where we know that2 ≤ j ≤ N − 1. We denote byγ+(j) the rate
that a typej peer becomes a typej +1 peer, and then the transition
rate isMp(s) · Ejs

T γ+(j). Please refer to Appendix B for the
derivation ofγ+(j).
(7) X(s), X(s+Ej−1−Ej) → X(s)−1, X(s+Ej−1−Ej)+1:
It means that for a peer of states, one of the neighbors of typej
loses a neighbor, and then becomes a neighbor of typej−1, where
we know3 ≤ j ≤ N . We denote byγ−(i, j) the rate that a type
j peer becomes a typej − 1 peer, which has at least one neighbor
of typei. Then the transition rate isMp(s) ·Ejs

T γ−(i, j). Please
refer to Appendix C for the derivation ofγ−(i, j).

WhenINsT < N − 1, we have:

d

dt
X(s, t) = λ(s) − Mp(s)µ(s)

−
X

2≤j≤N−1

2Mω · p(s)Prob{sb ∈ Sj−1}

−2Mω · p(s)Prob{sb ∈ SN−1 ∪ SN , Ii+1s
T
b < N − 1}

+
X

2≤j≤N−1

2Mω · p(s − Ej)Prob{sb ∈ Sj−1}

+2Mω · p(s − EN)Prob{sb ∈ SN−1 ∪ SN , Iis
T
b < N − 1}

−
X

2≤j≤N

Mp(s) · Ejs
T ρ(i, j)

+
X

2≤j≤N

Mp(s + Ej) · (Ejs
T + 1)ρ(i + 1, j)

−
X

2≤j≤N−1

Mp(s) · Ejs
T γ+(j)

+
X

3≤j≤N

Mp(s + Ej−1 − Ej) · (Ej−1s
T + 1)γ+(j − 1)

−
X

3≤j≤N

Mp(s) · Ejs
T γ−(i, j)

+
X

2≤j≤N−1

Mp(s − Ej + Ej+1) · (Ej+1s
T + 1)γ−(i, j + 1)

Similarly, we can getd
dt

X(s, t) when INsT = N − 1. At the
steady state, we haved

dt
X(s, t) = 0, and we can get an equation

for eachs ∈ S . Note that all other parameters can be expressed by
{p(s)|s ∈ S}, so we can get{p(s)|s ∈ S} by solving this system
of equations. As a result, we can compute the fractions of peers
with different connection numbers and then the average number of
connections per peer at steady state.

3. SIMULATION RESULT
We carry out simulation to verify the proposed model. In the

simulations, we letC = 1000Kpbs, N = 4, λ = 1, ω = 1/30,
and vary the file size. Each simulation is executed for5000 or
10000 seconds, and the fractions of peers with different connection



numbers{qi|1 ≤ i ≤ N} are depicted in Fig.1, Fig.2 and Fig.3.
We also solve the system of equations from our model by Gauss-
Newton method. After getting{p(s)|s ∈ S}, we compute{qi|1≤
i≤N}, whose values are also plotted in the corresponding figures.

We can observe that the numerical results from our model match
well with the simulation results, especially when the file size is
large. Moreover, from Fig.1, we know that only about 15% peers
can connect with enough neighbors, and we can compute the aver-
age number of connections per peer, which is less than1.5. From
Fig.2 and Fig.3, we know that more than 70% peers can connect
with enough neighbors, and we can also compute the average num-
bers of connections per peer, which are more than3.5. So the aver-
age number of connections per peer increases with the file size.
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Figure 1: File size is 10M .
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Figure 2: File size is 100M .
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Figure 3: File size is 300M .

4. CONCLUSION
In this paper, we study the dynamics of BT systems, and propose

a stochastic model to evaluate the average number of connections
per peer at steady state. We observe that this value increases with
the file size. Using this model, BT users can choose the maximum
number of connections according to the file size to minimize their
costs. For future work, we plan to extend this model to study het-
erogeneous peers, and investigate the performance gains for peers
with different upload capacities. This can help us to understand the
behavior of peers which are able to adjust the upload capacities.

5. REFERENCES
[1] Bittorrent protocol. http://www.bittorrent.com/protocol.html.
[2] B. Fan, J. C. S. Lui, and D. M. Chiu. The delicate tradeoffsin

designing bittorrent-like file sharing protocols’.To appear in
IEEE/ACM Transcations on Networking.

[3] W. C. Liao, F. Papadopoulos, and K. Psounis. Performanceanalysis of
bittorrent-like systems with heterogeneous users.Performance
Evaluation, 64(9-12), 2007.

[4] M. H. Lin, B. Fan, D. M. Chiu, and J. C. Lui. Stochastic analysis of
file swarming systems.Performance Evaluation, 64(9-12), 2007.

[5] J. Mundinger, R. R. Weber, and G. Weiss. Analysis of peer-to-peer file
dissemination amongst users of different upload capacities.
SIGMETRICS Performance Evaluation Review, 34(2):5–6, 2006.

[6] D. Qiu and R. Srikant. Modeling and performance analysisof
bittorrent-like peer-to-peer networks. InProc. ACM SIGCOMM,
Portland, Oregon, USA, August 2004.

APPENDIX

A. DERIVATION OF ρ(I, J)

From equation (1), we can specify thatρ(i, j) = µj + σ(i, j),
whereσ(i, j) is the rate of a typej peer (say peerb) terminating
the connection with a typei peer (say peera) since it finds a better
neighbor (say peerc). We know that ifi ≤ 2 or j < N , σ(i, j) =
0. Otherwise,

σ(i, j) =
X

EisT
b >0

IisT
b =N−1

2ω
p(sb)

Prob{s ∈ SN , EisT > 0}

·Prob{INsT
c < i − 1}

1

EisT
b

. (2)

So we can getρ(i, j).

B. DERIVATION OF γ+(J)

Suppose a random request arrives at a peer of typej (j < N ),
and the other peer involved is of types. We know that ifIj+1s

T <
N − 1, a new connection will be established. So

γ+(j) = 2ωProb{Ij+1s
T < N − 1}. (3)

C. DERIVATION OF γ−(I, J)

Note that, for a peer of typej, the rate of a typek neighbor
terminating the connection isρ(j, k). Let this typej peer be in
peer states, we know that ifk = i, Eis

T > 1, and if k 6= i,
Eis

T > 0. So we can get

γ−(i, j) =
X

EisT >1,s∈Sj

p(s)(Eis
T − 1)ρ(j, i)

Prob{Eis′T > 0, s′ ∈ Sj}

+
X

2≤k≤N,k 6=i

EisT >0,s∈Sj

p(s)EksT ρ(j, k)

Prob{Eis′T > 0, s′ ∈ Sj}
. (4)


